Random Euclidean embeddings in finite-dimensional Lorentz spaces
نویسندگان
چکیده
Quantitative bounds for random embeddings of $\mathbb{R}^{k}$ into Lorentz sequence spaces are given, with improved dependence on $\varepsilon$.
منابع مشابه
From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups
The Lorentz transformation of order $(m=1,n)$, $ninNb$, is the well-known Lorentz transformation of special relativity theory. It is a transformation of time-space coordinates of the pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and $n$ space dimensions ($n=3$ in physical applications). A Lorentz transformation without rotations is called a {it boost}. Commonly, the ...
متن کاملOn Embeddings between Classical Lorentz Spaces
Let p 2 (0; 1), let v be a weight on (0; 1) and let p (v) be the classical Lorentz space, determined by the norm kfk p (v) := (R 1 0 (f (t)) p v(t) dt) 1=p. When p 2 (1; 1), this space is known to be a Banach space if and only if v is non-increasing, while it is only equivalent to a Banach space if and only if p (v) = ? p (v), where kfk ? p (v) := (R 1 0 (f (t)) p v(t) dt) 1=p. We may thus conc...
متن کاملQuantum approximation I. Embeddings of finite-dimensional Lp spaces
We study approximation of embeddings between finite dimensional Lp spaces in the quantum model of computation. For the quantum query complexity of this problem matching (up to logarithmic factors) upper and lower bounds are obtained. The results show that for certain regions of the parameter domain quantum computation can essentially improve the rate of convergence of classical deterministic or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2023
ISSN: ['0039-3223', '1730-6337']
DOI: https://doi.org/10.4064/sm210612-26-8